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Photolysis of riboflavin in aqueous solution: a kinetic study
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Abstract

The kinetics of photolysis of aqueous riboflavin solutions on UV and visible irradiation has been studied in the pH range
1–12 using a specific multicomponent spectrophotometric method for the simultaneous determination of riboflavin and its major
photoproducts (formylmethylflavin, lumichrome and lumiflavin). The apparent first-order rate constants for the photodegradation
reactions in the pH range have been determined. The logk–pH profiles indicate that riboflavin has maximum photostability around
pH 5–6, at which the rate of oxidation–reduction of the molecule is lowest. The cationic and anionic forms of riboflavin are
non-fluorescent and less susceptible to photolysis than the non-ionised molecule as indicated by the relatively slow rates below
pH 3.0 and above pH 10.0. The rate of photolysis is increased up to 80-fold at pH 10.0, compared to that at pH 5.0, due to
increase in redox potentials with an increase in pH and consequently the ease with which the molecule is oxidised. The increase
in rate at pH 3.0, compared to that at pH 5.0, appears to be due to the involvement of the excited singlet state as well as the triplet
state in riboflavin degradation. The apparent first-order rate constants for the photolysis of riboflavin at pH 5.0–10.0 with UV
and visible radiation are 0.185× 10−2 to 13.182× 10−2 min−1 and 0.098× 10−2 to 7.762× 10−2 min−1, respectively.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Aqueous solutions of riboflavin are sensitive to
light (DeRitter, 1982; British Pharmacopoeia, 1998;
Martindale, 1999) and are degraded through a variety
of reactions (Penzer and Radda, 1967; Hemmerich,
1976; Ahmad and Tollin, 1981a; Ahmad et al., 1981,
2004; Heelis, 1982, 1991; Stevens et al., 1997), result-
ing in a number of products under aerobic and anaer-
obic conditions (Smith and Metzler, 1963; Treadwell
et al., 1968; Cairns and Metzler, 1971; Cerman and
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Hais, 1972; Schuman Jorns et al., 1975; Ahmad and
Rapson, 1990). Several studies have been conducted
on the photodegradation of riboflavin in pharmaceuti-
cal preparations (Yamaji et al., 1981; Yamaoka et al.,
1982, 1995; Bhatia et al., 1983; Buxton et al., 1983;
Chen et al., 1983; Allwood, 1984; Allwood and Kear-
ney, 1998; Smith et al., 1988; Martens, 1989; Zhan
and Yin, 1992; Garcia and Silva, 1997; Silva et al.,
1998; Edwards et al., 1999; Park et al., 1999) and at-
tempts have been made to improve the photostability
of the vitamin by various methods (Shin et al., 1970;
Kostenbauder et al., 1971; Saleh, 1974; Casini et al.,
1981; Asker and Habib, 1990; Habib and Asker,
1991; Loukas et al., 1995, 1996). Riboflavin plays
an important role in photosensitised degradation of
a wide range of substrates (Silva, 1992; Silva and
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Godoy, 1994; Silva et al., 1991, 1993, 1994, 1995,
1999, 2002; Lu et al., 2000, 2004; Rochette et al.,
2000; Edwards and Silva, 2001; Haggi et al., 2002;
Min and Boff, 2002; Glover et al., 2003; Montana
et al., 2003; Viteri et al., 2003; Huvaere et al., 2004).

The photolysis of riboflavin in aqueous solution
occurs through 7,8-dimethyl-10-(formylmethyl) isoal-
loxazine (formylmethylflavin) as an intermediate
which is hydrolysed to lumichrome and lumiflavin
as the major photoproducts (Smith and Metzler,
1963; McBride and Metzler, 1967; Ahmad and Rap-
son, 1990; Ahmad et al., 1980; Heelis et al., 1980).
The kinetics of photolysis of riboflavin or formyl-
methylflavin or hydrolysis of formylmethylflavin has
been studied by following the loss of absorbance at
445 nm, without any consideration of interference
from photoproducts at this wavelength (Halwer, 1951;
Smith and Metzler, 1963; Holmstrom, 1964; Radda
and Calvin, 1964; Song et al., 1965; McBride and
Metzler, 1967; McBride and Moore, 1967; Sato et al.,
1982, 1983, 1984). Thus the kinetic information ob-
tained from these studies may not be reliable.

Riboflavin is a highly photosensitive compound and
is extensively used as a component of liquid vita-
min preparations and parenteral nutrition solutions. A
knowledge of its photochemical behaviour in aqueous
solution over an appropriate pH range has important
pharmaceutical implications and is needed to predict
the shelf-life. The choice of the optimum pH is cru-
cial for liquid preparations. In the present work aer-
obic photolysis of riboflavin has been studied over a
wide range of pH (1–12) by UV and visible radiations
using a specific multicomponent spectrophotometric
method (Ahmad and Rapson, 1990) and the kinetics of
the reaction has been evaluated to determine the effect
of pH on the rate of photolysis and the range of op-
timum stability. Similar studies have been conducted
on the photolysis of cyanocobalamin (Ahmad et al.,
1992, 2003) and folic acid (Akhtar et al., 1999, 2000).

2. Materials and methods

Riboflavin (RF), lumiflavin (LF) and lumichrome
(LC) were obtained from Sigma Chemical Co.
Formylmethylflavin (FMF) and carboxymethylflavin
(CMF) were synthesized by the methods ofFall and
Petering (1956)and Fukumachi and Sakurai (1954),

respectively. 1,2-Dihydro-6,7-dimethyl-2-keto-1-d-ri-
bityl-quinoxaline-3-carboxylic acid (�-ketoacid) and
6,7-dimethyl-4-d-ribityl-2,3-dioxo-1,2,3,4-tetrahydro-
quinoxaline (flavo-violet) were prepared accord-
ing to the methods ofSurrey and Nachod (1951)
and Ina (1959), respectively. All reagents and
solvents were of the purest form available from
BDH/Merck. The following buffer systems were
used throughout. KCl–HCl, pH 1.0–2.0; citric acid–
Na2HPO4, pH 2.5–8.0; Na2B4O7–HCl, pH 8.5–9.0;
Na2B4O7–NaOH, pH 9.5–10.5; Na2HPO4–NaOH,
pH 11.0–12.0; the ionic strength was 0.005 M in each
case.

2.1. Precautions

All experimental procedures were carried out in
a dark chamber under subdued light. Riboflavin so-
lutions were protected from light before irradiation.
Freshly prepared solutions were used for each experi-
ment to avoid any chemical or photochemical effects.

2.2. Photolysis

2.2.1. UV lamp
A 10−4 M aqueous solution of riboflavin (500 ml)

at the appropriate pH was placed in a 1-l Pyrex flask
and irradiated with 125 W medium pressure mercury
vapour lamp with emission at 313 and 366 nm (Ap-
plied Photophysics Ltd., UK). The solution was con-
tinuously bubbled with oxygen during irradiation. The
lamp was located in a double walled tube with pro-
vision for circulation of water and fitted at the cen-
tre of the reaction flask. The temperature of the solu-
tion during irradiation was maintained at 25± 1◦C
by circulation of water from a thermostat cooling unit
(Frigomix 1496, B. Braun). Samples were withdrawn
at appropriate intervals for thin-layer chromatography
and spectrophotometric assay.

2.2.2. Visible lamp
A 10−4 M aqueous solution of riboflavin (100 ml)

at the appropriate pH was prepared in a 100 ml volu-
metric flask (Pyrex) and placed in a water bath main-
tained at 25± 1◦C. The solution was irradiated with
Philips HPLN 125 W high pressure mercury vapour
fluorescent lamp (emission at 405 and 435 nm) fixed
horizontally at a distance of 30 cm from the centre
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of the flask. The solution was continuously stirred by
bubbling a stream of oxygen into the flask.

2.3. Thin-layer chromatography

Thin-layer chromatography (TLC) of the pho-
tolysed solutions of riboflavin was carried out
on 250-�m cellulose plates (Whatman CC 41)
using the solvent systems: (A) 1-butanol–acetic
acid–water (40:10:50, v/v, organic phase); and (B)
1-butanol–1-propanol–acetic acid–water (50:30:2:18,
v/v) (Ahmad et al., 1980). The flavins were detected
by their characteristic fluorescence emission under
UV (365 nm) excitation.

2.4. Spectral measurements

All spectral measurements on riboflavin and its
photolysed solutions were carried out on a Shimadzu
UV-240 recording spectrophotometer using quartz
cells of 10-mm pathlength.

2.5. Light intensity measurements

The intensities of the 125 W medium pressure mer-
cury vapour lamp and HPLN high pressure mercury
vapour fluorescent lamp were determined by potas-
sium ferrioxalate actinometry (Hatchard and Parker,
1956) as 2.19± 0.12 × 1018 quanta s−1 and 1.14±
0.10× 1017 quanta s−1, respectively.

2.6. Assay method

The assay of riboflavin and its photoproducts in
degraded solutions was carried out by a previously
reported multicomponent spectrophotometric method
(Ahmad and Rapson, 1990).

3. Results and discussion

3.1. Photoproducts of riboflavin

The photolysed solutions of riboflavin were sub-
jected to TLC using solvent systems A and B to
identify the products formed on UV and visible ir-
radiation. The following products were detected on

comparison of theirRf values and fluorescence emis-
sion with those of the authentic compounds.

pH 1–6: FMF, LC (major),
CMF (minor)

pH 7–9: FMF, LC, LF
(major), CMF (minor)

pH 10–12: FMF, LC, LF
(major), CMF,�-keto
acid, flavo-violet (minor)

Fluorescence emission: RF, FMF, LF,
CMF—yellow green
LC, �-keto acid—blue
Flavo-violet—violet

The main photoproducts of RF at pH 1–12 are
FMF, LC and LF, which are obtained by the ox-
idation of ribityl side-chain. A minor photoprod-
uct, CMF, is obtained at pH 7–12. In addition to
these, two minor isoalloxazine ring cleavage prod-
ucts, i.e.,�-keto acid and flavo-violet are obtained
by alkaline hydrolysis of RF at pH 10–12. All these
products have been previously reported (Surrey and
Nachod, 1951; Ina, 1959; Guttman, 1962; Treadwell
et al., 1968; Ahmad and Rapson, 1990). The pho-
toproducts of riboflavin formed on UV or visible
irradiation appeared to be the same except that the
reaction was faster in solutions exposed to UV radi-
ation as indicated by the spot intensities of various
compounds.

3.2. Assay of photoproducts

A specific multicomponent spectrophotometric
method (Ahmad and Rapson, 1990) has been used to
assay riboflavin and its main photoproducts, FMF, LC
and LF. The results of the assay of four compounds in
a photolysed solution (pH 7.0) are reported inTable 1.
The assay method gives uniformly increasing values
of FMF, LC and LF, with an almost constant molar
balance, with time. The values of the molar balance
are in good agreement with the initial concentration
of RF. The slightly higher molar balance may result
from the presence of some minor products absorbing
in the region of analytical wavelengths. The analytical
data obtained for riboflavin photolysis by this method
are accurate and free of any interference from its
photoproducts and are thus reliable for kinetic studies
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Table 1
Photolysis of 10−4 M riboflavin solution at pH 7.0 (citro-phosphate buffer) concentrations of riboflavin and photoproducts

Time (min) RF (M × 105) FMF (M × 105) LC (M × 105) LF (M × 105) Total (M × 105)

0 10.00 – – – 10.00
2.5 9.82 – 0.17 0.15 10.14
5 9.73 – 0.21 0.21 10.15
7.5 9.54 0.03 0.28 0.21 10.06

10 9.51 0.04 0.33 0.19 10.07
15 9.47 0.04 0.46 0.19 10.16
20 9.06 0.11 0.55 0.19 9.91
25 9.09 0.17 0.59 0.24 10.09
30 8.77 0.26 0.82 0.18 10.03
40 8.39 0.38 1.18 0.21 10.16
50 7.82 0.44 1.49 0.23 10.00
60 7.54 0.52 1.89 0.26 10.23
70 7.07 0.62 2.29 0.24 10.25
80 6.91 0.65 2.36 0.32 10.24

125-W medium pressure mercury vapour lamp.

compared to those obtained by some workers by direct
absorbance measurement at 445 nm (seeSection 1).

3.3. Effect of pH

Riboflavin is sensitive to pH (pKa1 1.7, pKa2 10.2;
Budavari, 1989) and undergoes a number of acid–base
equilibria to produce cationic, neutral and anionic
species at various pH values (Hemmerich et al., 1965).
The rate of photolysis of riboflavin depends upon the
state of ionisation of the molecule and its suscep-
tibility to excitation and subsequent degradation on
exposure to light. The photophysical and photochem-
ical processes involved and the factors affecting the
rate of degradation of drugs have been reviewed in
detail (Lachman et al., 1986; Laidler, 1987; Florence
and Attwood, 1988; Tonnesen, 1991; Martin, 1993;
Moore, 1996). In the present work aqueous solutions
of riboflavin were exposed to UV and visible radia-
tions and the analytical data were subjected to kinetic
treatment. The apparent first-order rate constants for
the photolysis reactions at pH 1–12 were determined
and are reported inTable 2.

In order to evaluate the effect of pH on the rate of
photolysis of riboflavin, logk–pH profiles for the re-
actions carried out using UV (313 and 366 nm) and
visible (405 and 435 nm) radiations were constructed.
Both profiles are similar in shape indicating that the
wavelengths of irradiation used have no significant ef-
fect on the nature of the reaction, however, the rates

of photolysis are higher with UV radiation, compared
to that of visible radiation, due to the energy of the ra-
diation involved. Several authors have dealt with the
interpretation of rate–pH profiles of drugs on the ba-
sis of their shapes and the processes involved (Garrett,
1967; Parrott, 1970; Rawlins, 1977; DeRitter, 1982;
Connors et al., 1986; Lachman et al., 1986; Florence
and Attwood, 1988; Carstensen, 1990; Fung, 1990;
Martin, 1993), this would now be discussed with ref-
erence to the photolysis of riboflavin.

Riboflavin is amphoteric in nature (isoelectric
point, pH 6.0;Budavari, 1989) and its rate of pho-
tolysis, in general, increases with an increase in pH.
The logk–pH profile of riboflavin (Fig. 1) may be
considered as a bell-shaped curve indicating the pres-
ence of two ionisable groups affecting rate with a
pHmax = 1/2(pKa1 + pKa2) = 5.9. It is evident from
the logk–pH profile that the rate is slowest in the pH
range of 5–6, increases about two-fold at lower pH
values to a maximum around pH 3.0 and then falls a
little at pH 2.0 due to ionisation of the molecule (pKa1
1.7). Above pH 5.0 there is a tremendous increase in
the rate reaching about 80-fold at pH 10.0. The data in
acid region appear to be somewhat in agreement with
the observations ofCairns and Metzler (1971)who
reported a 2.5-fold increase in the rate of anaerobic
photolysis at pH 3.0 (maximum in acid region) and
30-fold increase at pH 8.0 (maximum in alkaline re-
gion), relative to the rate at pH 5.0, on the basis of the
time required to achieve 20% bleaching by absorption
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Table 2
Apparent first-order rate constants for the photolysis of riboflavin at pH 1.0–12.0

pH k × 102 (min−1)a Correlation coefficient k × 102 (min−1)b Correlation coefficient

1.0 0.204 0.998 0.098 0.999
2.0 0.317 0.999 0.123 0.998
3.0 0.415 0.998 0.158 0.999
3.5 0.331 0.999 0.142 0.998
4.0 0.236 0.998 0.137 0.999
5.0 0.185 0.998 0.098 0.999
6.0 0.314 0.999 0.120 0.999
7.0 0.426 0.997 0.414 0.999
7.5 0.816 0.999 0.740 0.998
8.0 2.610 0.999 1.489 0.999
8.5 4.560 0.999 3.013 0.999
9.0 10.008 0.998 5.688 0.999
9.5 11.121 0.999 7.116 0.998

10.0 13.182 0.999 7.762 0.999
11.0 9.885 0.999 6.442 0.999
12.0 6.170 0.999 3.589 0.999

a 125-W medium pressure mercury vapour lamp (UV).
b 125-W high pressure mercury vapour fluorescent lamp (visible).

measurement at 445 nm. However, the photoproducts
of RF (i.e., FMF and LF) would also be bleached un-
der the conditions employed and, therefore, the assay
values for RF may not be accurate for a comparative
study. Unlike the anaerobic photolysis of RF in alka-
line solution (Cairns and Metzler, 1971), the rate of
aerobic photolysis continues to increase and reaches
to a maximum value at pH 10.0, with subsequent
decline due to anion formation (pKa2 10.2) (Table 2).
The ionised species of riboflavin appears to be less
susceptible to photodegradation than the non-ionised
species. It is important to recognize that the aerobic
photolysis of riboflavin is irreversible (unlike that un-
der anaerobic conditions) and that a greater degree of
degradation is observed when aerobic photobleach-
ing is carried out to the same degree as that with
anaerobic photobleaching (Treadwell et al., 1968).

An important factor in the photolysis of riboflavin
is the consideration of its redox behaviour. The re-
dox potentials of riboflavin are pH dependent (Clark,
1960; Wells, 1988; Martin, 1993; Mayhew, 1999;
Yamashita et al., 2002) and have a profound influ-
ence on the rate of photolysis involving intramolec-
ular photoreduction and subsequent oxidation of the
ribityl side-chain (Heelis, 1982). They are lowest in
the pH range 5–6 (E◦ pH 5.0 = −0.117 V; Wells,
1988; Martin, 1993) resulting in the lowest rate of
oxidation–reduction and hence the greatest stability

of the molecule around pH 5.0, the region most suit-
able for maintaining the pH of vitamin preparations.
The rate is increased with an increase in pH and re-
dox potentials (E◦ pH 7.0= −0.207 V; Wells, 1988;
Mayhew, 1999) up to pH 10.0 as shown inFig. 1.
The occurrence of higher redox potentials at higher
pH values causes a greater tendency to oxidation as
indicated by a tremendously high value of rate con-
stant for photodegradation at pH 10.0 (∼80-fold),
compared to that at pH 5.0. The effect of solvent on
the redox reactions of flavins have been reported by
Song (1971)andAhmad and Tollin (1981b).

In the acid region the nearly two-fold increase in
the rate at pH 3.0, compared to that at pH 5.0, may be
due to the photodegradation of RF to LC (main pho-
toproduct) through the excited singlet state (directly)
as well as the triplet state (through FMF as interme-
diate), as suggested bySong and Metzler (1967)and
Cairns and Metzler (1971). The possibility of the in-
volvement of two pathways leading to greater degra-
dation of RF in this region is substantiated by the fact
that almost equal rate constants are obtained at pH
1.0 and 5.0, indicating that the formation of LC is in-
dependent of FMF which would be protonated to the
extent of 99.7% at pH 1.0 and 3.0% at pH 5.0 (pKa
3.5; Suelter and Metzler, 1960) and is thus unable to
yield LC in the lower pH range due to resistance of
the protonated form to photoreduction and subsequent
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Fig. 1. logk–pH profiles for the photolysis of riboflavin in aqueous solution using UV light (	) and visible light (�).

degradation. Thus an increase in the rate at pH 3.0
would appear largely due to the degradation of RF to
LC through the excited singlet state and to a smaller
extent through the triplet state.

Some further explanation may be offered to the
logk–pH profile for the photolysis of riboflavin. The
slight decrease in the rate below pH 3.0 could be due
to similar decrease in the fluorescence of riboflavin
(Weber, 1950) resulting partly from the formation of
a non-fluorescent cation (pKa 1.7) but more from the
quenching of the singlet state (1Fl∗). The gradual slow
down in the rate in alkaline medium above pH 9.0
appears to be due to the formation of the anion (also
non-fluorescent) by deprotonation of N-3 (pKa 10.2).
The rates of photolysis at various pH values may be
influenced by the reactivity of the triplet state (3Fl∗)
which is more basic (pKa 4–5,Schreiner et al., 1975)

than the ground state flavin (Flox). In order to explain
the increased reactivity of3Fl∗ at higher pH,Cairns
and Metzler (1971)suggested the existence of a bent
triplet and a planar excited singlet state of riboflavin,
differing in the centre for hydrogen abstraction and
protonation, to be responsible for the dependence of
the rate of photolysis on pH.

The present study has shown that riboflavin has the
lowest rate of photodegradation at pH 5–6, the range
most suitable for maintaining the pH of vitamin prepa-
rations. However, the possibility of mutual interaction
between riboflavin and other vitamins and any adverse
effects of pH on other vitamins in this range has to
be considered and appropriate measures to be taken
to avoid the loss of the vitamins. The various aspects
of photostability of drugs and drug formulations have
been dealt in detail byTonnesen (1996)and modern
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approaches to photostability testing of drugs and stan-
dardization of experimental conditions have been dis-
cussed byAnderson et al. (1991), Tonnesen (1991),
Tonnsen and Moore (1993), andTonnesen and Karlsen
(1995, 1997).

4. Conclusion

The photolysis behaviour of riboflavin in the pH
range 1–12, on UV and visible irradiation, may be
explained on the basis of the shape of logk–pH pro-
file involving the existence of different species of
the molecule (i.e., ionised/non-ionised) in this pH
range and their redox potentials and fluorescence
characteristics. The non-ionised species of riboflavin
is more susceptible to photolysis than the ionised
species. The increase in rate between pH 5.0 and
10.0 is largely due to the existence of the molecule
in the non-ionised state and a gradual change, with
pH, in redox potentials. The relatively low rates of
photolysis below pH 2.0 and above pH 10.0 are due
to the cation and anion formation, respectively, both
of which are non-fluorescent and due to acid–base
quenching of the excited singlet state. Riboflavin so-
lutions are most stable to UV and visible radiations
at pH 5–6, the range suitable for maintaining the pH
of vitamin preparations provided vitamins other than
riboflavin are not adversely affected.
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